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THE HUMAN AS AN OPTIMAL
CONTROLLER AND INFORMATION PROCESSOR

by
Sheldon Baron and David L. Kleinman

SUMMARY

A mathematical model of the human operator in multivariable
control tasks 1s developed by considering the human as a control
and information-processing system. The model contains elements
for describing the operator's inherent physiological limltations
as well as his instrument-monitoring, data-reconstruction and con-
trol behavior. Special emphasls is placed on the instrument-moni-

toring aspects of the model.

The human's limitations are modelled by combining; them into
an equivalent perceptual time delay and an equlivalent observation
noilse. The main assumption underlying the subsequent theoretical
investigations 1s that the well-trained, well-motivated operator
behaves in a near optimal manner, subject to the constraints im-
posed by the above limitations. Thus, the operator's control be-
havior is assumed to be that of an ideal feedback controller.

The human's data-reconstruction process 1s chosen so as to obtain
a "best" estimate of the state of the controlled element based on
information obtained from "sampling'" the various instruments.

The data reconstructor consists of a Kalman estimator and a pre-
dictor in tandem, its structure is fixed but it depends, para-

metrically, on the sampling behavior.

Instrument-monitoring behavior depends explicitly on the con-
trol task and on the control actions. Provision is made for the
ability to obtain information from the peripheral visual field and



there are no restrictions on signal coupling. The visual sampling
model also includes means for constraining instrument scanning
rates. The specific characteristics of the operator's visual
sampling behavior are predicted by solving a nonlinear optimiza-
tion problem. This problem is precisely formulated and methods
for its solution are discussed. By changing the variances of the
observational noises 1t 1s possible to predict the effects that
changes in the visual display panel will have upon the human's
sampling behavior. Finally, instrument sampling characteristics
for a simple two-axis compensatory tracking task are obtalned.
The results exhibit the general characteristics one would expect

from a human operator performing a similar task.



INTRODUCTION

The basic objective of research to be performed under
Contract No. NAS-12-104 is the investigation of representations
of the human operator with a view towards thelr relation to dis-
play system evaluation. Our previous efforts under this contract
were primarily concerned wlth developing new methods for identi-
fying the characteristics of human pllot control behavior. 1In
that work we examined linear and nonlinear representatlions of the
pilot in a single-axis compensatory tracking task (Ref. 1). Such
models are useful for obtalning a better understanding of pilot
control behavior and, hence, for synthesizing manual control sys-
tems. However, since the models were developed for single-axis
tracking and required no visual sampling, they represented only a
first step in the development of analytic display evaluation tech-

niques.

We are now investigating the problem of manual control in
more complex, multivariable situatlons. Our goal in this phase
of the research is to obtain a more complete mathematical descrip-
tion of the human operator's information-processing and control
behavior. (It should be understood that our aim is not necessarily
to describe the conscious thought processes or physical structure
of the operator; rather, we hope to model his overt behavior, Thus
the models will be valid to the extent that theilr input-output
behavior 1is analogous to that of the human operator.)

In this report we shall describe our model of the human oper-
ator as an information-processor and controller. We emphaslze
those aspects of the model concerning visual sampling of multi-
instrument display panels as this represents the major thrust of
our recent and current research under this contract. We begin
with a brief review of past research in human instrument sampling.



Then we descrlibe the structure of our model of human operator be-
havior in a multivariable control task and show how the sampling
model interfaces with other elements of the overall human operator
model. The model we have postulated is rooted in modern control
theory and, as we shall see, to obtain the model parameters (e.g.,
control gains, sampling strategies, etc.), we must solve a complex
optimization problem. The theoretical background for this problem
1s discussed and we then give a precise mathematical formulation
of the optimization problem. Numerical results for a simple, two
axis problem are obtalned and these results serve to 1llustrate
various aspects of the problem. Finally, we discuss implications
of our research efforts and the directions for further work.,
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SYMBOLS

running time

vehicle state vector

pilot's control input vector
external vehlecle disturbance vector
system matrix

control matrix

covariance matrlx of w
displayed quantities (C x)
system output matrix

human's time delay

a sampling strategy

class of all sampling strategiles
observation noise

covariance matrix of v
information processed by human operator (Xd(t‘T)+ xw(t))
expectation operator

terminal or final time

cost functional to be minimized
state welghting matrix

control weighting matrix
sampling "cost"

optimal control

optimal feedback galns



Lc* é:'h

€
*

I=

=4

v

I(w)

T #

SYMBOLS (Continued)

least mean squared estimate of x

minimum cost

optimal sampling strategy

range space for function w(e+)efR

time varying solution of matrix Riccati equation
asymptotic Riccatl Equation

"error" covarlance matrix

part of J¥ which depends explicitly on w
sampling period

asymptotic variance equation

optimal sampling period



VISUAL SAMPLING MODELS: A BRIEF REVIEW

Although a detalled understanding of human visual sampling
processes in a complex control or monitoring task is essential to
the development of rational display design procedures, there has
been surprisingly little research in this area of human engineer-
ing. The first significant attempt to understand how pilots use
thelr eyes 1ln order to obtaln information from many separate in-
struments was made at Wright-Patterson Alr Force Base in the period
1949-1954 (Refs. 2-10). The WPAFB studies were aimed at determin-
ing patterns of pllot eye movements in actual control situations.
Eye fixations of pllots were recorded in a series of flight tests
and the frequency and duration of fixations on varlous instruments,
as well as transitions between palirs of instruments, were deter-
mined for a number of flight conditions. However, no attempt was
made 1n these studles to model the human visual sampling process.
Indeed, the inputs to the instruments were not recorded and, con-
sequently, the data 1s of limited utility with respect to verify-
ing any predictive models.

The first quantitative model for describing pilot sampling
behavior was developed by Senders (Ref. 11). This model was based
on information-theoretic ldeas, particularly Shannon's sampling
theorem (Ref. 12). A baslic assumption of the model was that the
human observer samples the various signals periodically and attempts
to reconstruct the time functions presented on each instrument.
Moreover, 1t was assumed that the operator was effectively a slngle
channel device capable of attendlng to only one signal at a time.
With these concepts as a starting point, Senders was able to derive
expressions for the frequency and duration of samples of an instru-
ment given 1its input signal characteristics and the required pre-
cision of readout. This model predicted quite well the average



behavior of subjJects in an experimental situation. In the experi-
ments the subject's task was to monitor a panel containing four
Instruments driven by zero-mean gaussian signhals of different
bandwidths, and to indicate whenever any of the signals exceeded
a predetermined threshold. Since the subject's task was quite
different than the one assumed in deriving the model, 1t 1s some-
what surprising that there was such good agreement between theory
and experiment. Senders (Ref. 13) explains this good agreement
by noting that the sampling frequencies would be proportional to
the signal bandwidths only if the signal power and the magnitudes
of significant deviations* were the same for all the signals and
that such was the case in his experiments. Thus, the agreement
which was obtained was somewhat fortultous since 1t depended on a
unique experimental condition.

It seemed reasonably clear that the simple periodic sampling
model would not adequately predict behavior in more complex situa-
tions, especlally slnce observed data gave evlidence of aperiodic
sampling behavior (Ref. 13). Taking a cue from the fact that pilots
often are only concerned with detection of extreme readings rather
than with signal reconstruction, Senders proposed a condlitional
sampling scheme which would result in aperiodic behavior. In this
approach, the human monitor 1s considered as a channel for the
transmission of discrete messages and not as a channel for the
transmission of a complete time function. In this context 1t 1s
possible to postulate several, not necessarily mutually exclusive,
sampling strategies. Thus, Elkind (Ref. 14) hypothesizes a
strategy in which a sample is taken when the probablility that the
signal exceeds a prescribed limlt 1s greater than some subjective
probability threshold, whereas Grignetti (Ref. 14) assumes that a

*
Senders defines a significant deviation as an excursion of the
signal beyond the predetermined threshold.



sample 1s taken when the probability of exceeding the 1limit is a
maximum. Senders (Ref. 14), on the other hand, suggests a sampling
strategy based on a "Variable Nyquist Interval'".

Unfortunately, none of the above conditional sampling models
have been tested against experimental data. Smallwood (Ref. 15),
however, has developed a model which has been tested against the
data of the simple experiment described above with encouraging
results. Although similar in some of the detalls, Smallwood's
model 1s conceptually quite different from those previously de-
veloped. His view of the human operator 1s portrayed in Figure 1.
The model is based on two underlying assumptions: 1) the human
onperator bases his state of information about his environment upon
an internal model of this environment; the model 1s formed as a
result of past perceptions of his environment; 2) the human opera-
tor behaves optimally with respect to his task and his current
state of information within his physical limitations. Of course,
to apply the model, one must make further assumptions. First,
one must postulate a form for the internal model which describes
the monltor's conception of the environment he is monitoring.
Smallwood's approach to this problem is to assume that the monitor's
model of each instrument 1s a good approximation to the true situ-
ation. Thus, iIn attempting to predict the results of the labora-
tory experiment described above, the Internal model 1is based upon
the assumption that the instrument readings are the result of
passing white gaussian nolse through a linear time invariant filter.
By allowing higher-order filters, Smallwood 1s able to account for
the perception of signal rate as well as signal amplitude. This
was not possible with the previous models. The next step in
speclfying Smallwood's model 1s to aefine what 1s meant by the
statement that the human operator behaves optimally with respect
to his task. Smallwood's interpretation 1s that the human monitor,

"interested in detecting immedlate excursions of the instruments
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beyond the threshold, switches his attention to that instrument
for which the probability of exceeding the threshold is a maximum.
Note that this declsion criterion is quite similar to those of
Elkind and Grignetti.

The last aspect of Smallwood's model_which requires specifi-
cation is the operator's sehsory system. The following assumptions
are made by Smallwood in arriving at a model for the human visual
perception process.

(1) A "dead time" of 0.1 seconds is required to shift
attention between two different instruments.

(2) Upon fixating on an instrument a record of the in-
strument reading is stored instantaneously within
the short-term memory.

(3) The readout time is dependent upon the precision
of the required reading, and this precision 1s de-
pendent in turn upon the proximity of the instru-
ment reading to one of the thresholds.

As we have noted previously, there 1s very little experimen-
tal data with which to compare the predictions of the above models.,
Even in the cases where such comparisons can be made, i.e.,
Senders and Smallwood's predictions for the sampling behavior in
the laboratory experiments, the experimental situation was such
that it is virtually impossible to make inferences concerning the
general "operational" validity of these models. However, it is
possible to point out some inherent limitations in these models.
The first and perhaps most significant limitation is that none
of the models have been used to take into account, in any mean-
ingful way, correlation between various instruments. Senders
(Ref. 14) made a preliminary attempt to include correlation be-
tween instruments and went so far as to run laboratory experiments
with correlated signals. However, the results from the experiment
were far from encouraging. Smallwood's model does not appear
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to have any fundamental limitations with regard to signal correla-
tion. In fact, with the appropriate choice for an internal model,
it seems fairly clear that a method for dealing with coupling 1s
possible within the framework of hils model, but he has, thus far,
eschewed any attempt to lInclude such effects. A second signifi-
cant limitatlion of these models 1s that none of them take into
account, explicitly, the interaction between sampling and control
behavior. 1In all cases the human operator is considered as a
monitor only; the control requirements play little if any role in
the selection of a sampling strategy. It 1s true that the

a posteriorl signal analysis which is necessary to obtain the
parameters of the conditional sampling models will 1lnclude the
effects of control. However, this is quite different from using
the control task in an attempt to predict sampling behavior.
Again, Smallwood's model seems least limited with regard to in-
¢luding such possibilities; but, as in the case of signal coupling,
Smallwood has not made any attempt to do so.

All of the models consider the human operator as a single-
channel device capable of processing information from only one
instrument at a time. This approach is at variance with the re-
cent experimental data, obtained by Levison and Elkind (Ref. 16),
concerning peripheral tracking. Thelr experiments showed that
under certain conditions pilots could perform two-axlis compensa-
tory tracking even though the information concerning one of the
axes was always in the peripheral visual field. While there might
be some argument as to whether the pilot 1s actually processing
both slignals simultaneously, it seems fairly clear that the abil-
ity to perform peripheral tracking will in fact affect the pilot's
sampling behavior and should therefore be accounted for in a
sampling model. Still another limitation of the models 1is that
no risk or cost structure has been incorporated. Equal costs are
assigned to all instruments. Moreover, there 1s no cost assigned

12



to taking a sample or to switching attention. It is possible
within the context of the Senders-type models to implicitly allow
different costs by assigning different allowable errors in read-
out., However, such an approach 1s qualitative at best. Smallwood
assumes a dead time for shifting of attention between two different
instruments in his model; this dead time may be interpreted as a
cost for switching attention. Finally, we note that the Senders,
Elkind and Grignetti models all assume that the instruments are

fed with zero-mean gausslian signals.

Carbonell (Ref. 17) has attempted to overcome some of the
above limitations by developing a model of visual sampling which
has its roots in queuing theory. If the human is assumed to be
a single-channel processor, then one 1s led to the notion
that the various information sources, l.e., instruments, queue-up
and wait thelr turn to be processed. The analysis of sampling
can then be approached as a problem in queulng theory and one can
arrive at estimates of the probabllity distribution of simultaneous
demands, the probability distribution of walting times and estimates
of the probability that events of interest will be missed. To be
more explicit, Carbonell assumes the followlng:

(1) Each time the observer looks at one instrument, he
1s postponing the observation of others.

(2) The observer makes an intelligent decision before
looking at an instrument each time, 1.e., he tries
to minimize the risk involved in not observing the
other instruments.

(3) This risk is represented by the probability that
the readings may, while not belng observed, exceed
a certain threshold leadlng to some catastrophilc
result (such as negative altitude or lack of fuel).

13



(4) The time involved in reading each instrument
will be assumed constant (of the order of 1/3
of a second) for all instruments. If the observer
looks at one instrument for a longer time, it is
considered as a second (third, etc.) consecutive
reading of the same instrument. In other words,
the observer chooses this instrument again to mini-
mize his total cost.

(5) The observer's task in visually sampling his in-
struments 1s part of a feedback loop closed through
his control actions.

As can be seen from his assumptions, Carbonell has 1indeed
addressed himself to some of the limlitations of the previous
models. In particular he includes a cost structure and the pos-
sibllity of control actions; in regard to the latter, it is only
fair to point out that he only accounts for control 1n the most
rudimentary way.* Although not apparent from the assumptioens,
Carbonell also removes the restriction of zero-mean gaussian sig-
nals. Instead, he assumes that, in the case of no control, the
signals are generated by a sort of random walk process with equal
probability of being above or below the value last read by lncre-
ments that are gaussianly distributed. He assumes further that it
is only through control action that the process can be brought to
equllibrium, that is, that the long-term signal will be zero mean.
However, even in such a case, the overall result is not a zero
mean gaussian signal. Having made these assumptions, it still
remalns necessary to specify a queue discipline in order to apply
Carbonell's model. Thils is an extremely difficult task in view
of the highly nonlinear declsion process involved. In order to
overcome this difficulty, Carbonell decided to simulate the prob-
lem on a digital computer and he has obtained some interesting

—
He assumes that if control is effected that it is of the form
exp(-kt).
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results. In particular, the simulation revealed that his model
resulted in periodic sampling only when there was a set of low
variance lnstruments and a relaxed task. Larger variances and,
hence, harder tasks resulted in progressively more aperiodic
sampling. This result agrees well with the observed sampling
behavior of human pilots in corresponding circumstances.

Carbonell's model is clearly more general and more flexible
than any of the other models previously developed. Nevertheless
it has not removed all the previously cited limitations. Peri-
pheral processing 1s not accounted for; indeed, the concept of
the human operator belng a single-channel processor 1s central
to the 1dea of the instrument queue. Also, coupling among lnstru-
ments 1ls not presently included in his model, although he claims
that such coupling could be incorporated. Finally, it should be
pointed out that Carbonell pays a heavy price in analytic com-
plexity for the flexibility that he has obtained. It appears
that only through extensive simulation can one obtain the pertin-
ent model parameters and predict human sampling behavior.

We close our review of visual sampling models by noting that
the models of Senders (periodic sampler), Smallwood and Carbonell
are currently being tested for their adequacy to predict behavior
in a more complex experimental situation (Ref. 18). Pilot eye-
movements were recorded during maneuvers "flown" on a Link C1l1B
Trainer. Signals driving the instruments were also recorded so
that they could be analyzed 1n conjunction with the eye-movement
data. Unfortunately, the results of the analysls are not yet
complete and, hence, no conclusions can be drawn at the present
time.
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HUMAN OPERATOR MODEL

In this chapter we discuss the structural form of our model
of the human operator as a control and information-processing sys-
tem. Since the problems of interest are generally multivariable,
state-space techniques and modern control theory are most suited
to their study and, hence, will play a central role in the de-
velopment., The basic assumption underlyling our approach 1is that
the well-motivated, well~trained human operator behaves 1n a near-
optimal manner, subject to his inherent limitations and con-
straints. This 1s not a new ldea. Several researchers have at-
tempted to apply optimization theory to the development of models
of human control behavior. The most recent attempt was made by
Elkind, et al* (Ref. 19). They used modern optimization theory
to predict human behavior in a multivariable tracking task, cor-
responding to a V/STOL vehicle in hover. The results of that
study were quite promising and our model of controller behavior
represents a further development of their approach. As our dis-
cussion of the previous chapter shows, varlious optimization tech-
niques have also been applied to the problem of visual sampling.
Indeed, the models of Senders, Smallwood and Carbonell are all
based on some optimization concept. However, as we shall see,
our approach to the optimization of visual sampling shall be quite
different from the ones taken by those investigators. Moreover,
we shall be concerned with the combined control and information

processing problem.

The human operator model which was adopted in this study is
shown in Figure 2 (p. 21). The model includes some of the human's

-
A brief summary of other attempts to predict human controller
characteristics via optimization techniques is given in Ref. 19.
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physical limitatlons as well as representations for his control
and information processing behavior. Its basic structure has
much in common with Smallwood's model of Figure 1. The displayed
state Y3 1s essentially a representation of the human operator's
environmental input. The block labeled perceptual processor is
related to Smallwood's sensory system and, as we shall see, the
data reconstructor is comparable to Smallwood's internal model.

We now clarify some of these ideas by briefly describing
each element in the pilot-vehlcle display model of Figure 2.

Vehicle Dynamics and Display--The human operator's basic task
is to control, in some prescribed way, a dynamic vehicle. Several

vehicle outputs may be of concern and the operator has several
inputs through which he can exert control on the vehicle. It 1is
assumed that the only means available for monitoring the vehicle's
performance 1s a display panel consisting of several instruments.
No external visual or kinesthetic cues are available.

We shall assume that the vehicle dynamlics are adequately

represented by the linear equations of motion
x(t) = A x(t) + B u(t) + w(t) (1)

where x 1s the vehlcle state, u the pllot's control input, and
where w represents the external disturbances (e.g., wind gusts).
For analytic tractabllity, w(t) will be considered a zero-mean,

gaussian white nolse with covariance W.

We further assume that displayed variables are linear combi-
nations of the vehlcle states. Thus, we account for the fact
that all of the vehicle states may not be explicitly displayed.
As an interesting sidelight, we note that such a representation
may allow us to investligate such things as integrated displays or
the presentation of qulckened information.
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Perceptual Processor--The human operator has certain physical
limitations which prevent him from making a perfect reading, ex-
cept in the simplest of casest of the value presented on an in-
strument. In the case of many 1nstruments, it 1s clear that he

can not make simultaneous, perfect observations. Moreover, even
1f he were able to make such observations, his limitations prevent
him from takling instantaneous and precise action. These limita-
tions must be accounted for 1ln any reasonable mathematical model
of the human operator. We now briefly discuss these limitations
and our method for including them 1n the model.

The inherent limitatlons of the human operator are manifold
and complex. However, as a first approximation, the number of
limitations to be conslidered can be reduced by combining phenomena
which have similar effects. For example, the time delays assoclated
with visual, central processing and neuro-motor pathways can be
comblned and represented by an equivalent time-delay which 1s as-
sociated with perception. In addition, neuro-muscular dynamics
can be approxlmated by a delay (Ref. 20) which can also be com-
bined with the neuro-delays and treated as an equlvalent percep-
tual delay. Simlilarly, since preliminary analysis has shown that
1t will be very difficult to distinguish experimentally between
observation noise, motor noise, and certailn types of time varia-
tions in control strategy, we can represent all three factors as
a single equivalent "observational noise" process.** The human
operator's abllity to make precise measurements 1is, however, a
function of many factors. The visual environment (ambient light
levels, glare, etc.) affects his ability to measure variables.

¥
For example, instruments of an on-off nature.

*%
Indeed, we can include "measurement noise" associated with the

vehicle's sensors and with the displays themselves in the "ob-
servatlion noilse."
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of more lmportance to this study, the abllity to measure precisely
a quantity would depend on the type and form of the display and on
the location of the display in the visual field, that is, on
whether the display is being viewed foveally or peripherally.

With the above comments in mind, we assume that the perceptual
process can be modelled by an equation of the form

y(8) = g (6=1) + v (t) = C x(t-1) + v (%) (2)

where y(t) 1s the "observation" processed by the human operator,
Xd(s) is the displayed state, T is a delay and Xw(t) is "observa-
tional noise". (Note that Xd(s) = C x(s), as described previously.)

We shall assume that the observational noise Yo is a gaussian
white noise process with a covariance Kw that depends on tlhie samp-

ling strategy w. The white nolse assumption is, to an extent,

physically unreasonable but it 1s a good approximation to an ob-
servational noise process that is wideband with respect to the
system bandwidth. Numerical values for the covariance wlll depend
on where the pilot is looking (i.e., whether he is viewing an in-
strument peripherally or foveally) and on relevant features of the
display panel. Preclise quantitative determlination of these values
is, of course, an extremely difficult task and 1t 1s not presently
clear exactly how they will be measured. However, as we shall see,
in some instances a coarse approximation to the values of Xw may
be sufficient. The method we have used for representing the per-
ceptual process makes the cholce of a suitably descriptive class
of allowable sampling strategles an important aspect of the prob-
lem. However, before turning our attention to the determination
of sampling behavior, let us examine the control and data recon-
struction portions of our model.

20
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Controller and Data Reconstructor--In thils section we give

precise meaning to the human operator's control objectives and
develop a model for hls resulting control characteristics. We

also postulate a model for describing the manner in which the
operator reconstructs the data necessary for control from the in-
formation obtalined by sampling the Instruments on the display panel.

We assume that the pllot's control objective 1s to select an
input u(t) to the dynamical system (given by Eq. (1)) so as to
minimize a cost functional of the form

e
J(w,u) = Egtlﬂ %— J [x'@ x + u' Ru+ &L (w,t)]dt{{3)
£
(o]

The quantity cf(w,t) in the cost functional is included to allow
a "direct" cost for sampling. It does not explicitly depend on
the control input u and thus, assuming a fixed sampling strategy
w, the human controller's characteristics are determined by the
solution of an "optimal regulator problem" (Ref. 21). Clearly,
not all real control problems can be represented in this way but

a great many can be. Moreover, using linear dynamics and speci-
fying a control task of minimizing the cost functional of Eq. (3)
represents a natural extension of the classical manual control
compensatory tracking experiments. In addition, the resulting
analytic simplification is so great as to justify extensive con-
sideration of problems of this type. The solution of this opti-
mization problem is well known (Ref. 22) and is characterized by
the linear feedback law

u¥(w) = -L* X (t) (%)

22



where gm(t) is the least mean square estimate of the state x(t),
glven the observed data y(1),T < t. The feedback gains L¥ are
independent of w and depend on the welghting matrices Q and R.
The minimum cost is denoted by

J¥(w) = min J(w,u) = J(w,u*) (5)
u

The estimate iw is obtained by "reconstructing" the system
state from the observed data y. In accord with our optimization
hypothesis, we shall assume that the data reconstructor consilsts
of a Kalman filter (Ref. 22) and a least-mean squared predictor
(Ref. 19) in cascade as shown in Figure 3.* The estimator is used
to model the human's deduction of vehicle states from displayed
information while the predictor models the human's compensation
for his inherent time delay. The parameters, but not the struc-
tural form, of the Kalman filter depend upon the nolse covariance
matrices W and Xw and hence upon the sampling strategy. On the
other hand, it can be shown that the predictor 1s independent of
w and so can be determined a priori in conjunction wilith the opti-
mal control gains L¥. It is interesting to note that the Kalman
filter requires for its implementation a model of the dynamic sys-
tem or, put another way, a model of the environment. The connec-
tlon between our data reconstructlion model and Smallwood's internal
model of the environment 1s then clear.

*It i1s well known that 1n the absence of time delay the Kalman
estimator provides the best mean squared estimate of the state

for the conditions of this problem. Indeed, i1t provides the best
linear estimate under much broader conditions. Moreover, with no
sampling and no observation noise, the predictor provides the best
mean squared estimate of the state when there is a delay (Ref.19).
We have assumed that wilth samplling, tlime-delay,and observation
nolse of the type described, the estimation and prediction pro-
cesses can be separated and further, that the tandem combination
provides for a given sampling strategy the best mean squared es-
timate of the instantaneous state. It may be possible to prove
thls rigorously but we have yet to do so. At the least, such a
structure should yleld a good "sub-optimal" estimator.

23



Sampler--The one remaining element in our pilot model is the
sampler. It should be absolutely clear at the outset that we are
referring to instrument sampling and not signal sampling. By a
sampling strategy we mean a method of deciding which instrument to
look at directly (foveally) at different time instances. All sig-
nals are contlinuously processed, but, in general, the signal on
the "sampled" instrument has a lower noise level associated with

it's reading.

The determination of the human operator's sampling strategy
will, as with other portions of our model, rest on the assumption
that the operator behaves in an approximately optimal fashion and
samples his instruments accordingly (for example, to minimize es-
timation error). In other words, the human chooses a sampling
strategy w* which minimizes J¥(w) over the class of admissable

strategies, 1.e.,

w¥ = arg min J¥(w) (6)
wesl

It is important to note that w¥ will, in general, depend on the
control requlrements. This wlll become clear in the next chapter
where a precise formulation of the optimal sampling problem is

given,

In order to simplify the mathematical problems assoclated
with determining w¥* in the above manner, it will be assumed that
the sampling strategy 1s independent of the time delay and, there-
fore, we can solve for w¥ by considering t=0. Heuristically,
thls approach seems reasonable. First of all, in the situation
of pure instrument monitoring, the effect of the time delay upon
sampling behavior 1s minimal at best and a sampling model can be
constructed which ignores this delay (as in Senders, Elkind, etc.).
Secondly, the prediction process associated with the time delay
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is independent of w and depends only on the system parameters A,
B, L*. If the converse were true then, indeed, we need only con-
sider the case 1=0. While thils conclusion must be verified mathe-
matically, it should be possible to at least show that the effect
of time delay on sampling behavior is of secondary importance and
may be neglected.

Summary--A model structure for representing the human opera-
tor in a multivariable control task has been postulated. The
model contalns elements for describing the operator's inherent
limitations as well as hls instrument monitoring, data reconstruc-
tion and control behavior. The inherent limitations of the human
operator have been modelled by lumplng them into an equivalent
perceptual delay and an equlvalent observational nolse. The noise
covariance depends on "where" the operator looks and hence influ-
ences the sampling strategy. The remainder of the model rests on
the assumption that the human operator behaves optimally with re-
spect to performing his various tasks. His control behavior is
assumed to be that of an ideal feedback controller with gains se-
lected so as to minimize a given quadratic cost functional. The
control galns are independent of the data reconstruction and in-
strument sampling processes, although the control input itself
does depend on these processes. The data reconstruction process
is modelled by a Kalman fllter and a least-mean square predictor
in cascade. * The structure of the data reconstructor is fixed but
the parameters depend upon the operator's sampling behavior.

The operator's samplling strategy is determined by solving an
optimization problem also; in particular, by minimizing (for the
case T=0) the functional J¥(w)(see Eq. (5)). The strategy thus
obtalned allows specification of the unknown parameters in the
data reconstruction sub-model, thereby completing the overall
model of the pllot-vehicle-display system.
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Although the detalls of the sampling model have yet to be
specified, several noteworthy points are already apparent. First,
the sampling model is such that the human's monitoring behavior
depends upon the control requlrements and the control actions in
an explicit way. Second, the ablllity to process Information from
the peripheral visual field is also included. Finally, there are
no apparent restrictions with regard to coupling of signals on

various instruments.
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OPTIMAL SAMPLING PROBLEM

In the last chapter we developed the structure for a model
of the human operator in a multivariable control and monitoring
task. We saw that, given the optimization assumption, we would
have to solve an optimal control problém in order to predict the
human operator's characteristics. Here, we shall make the opti-
mization problem more precise and dlscuss some of 1ts implicatlons.

The optimization problem itself 1s two-fold in nature. Con-
trol is avallable over not only the plant but also over the manner
in which Information concerning the system state 1s obtained and
processed. Problems of thlis type are embedded 1n a more general
class 1n which one i1s faced with an auxiliary optimization task
within an optimal regulator control framework. The often studled
problem of choosing sampling times and control input which mini-
mize a quadratic cost for a linear discrete system (Refs. 23,24)
is an example (although not applicable to the present study) of
this class. The design of optimal modulating signals for optimal
linear estimation, studied by Athans and Schweppe (Ref. 25), is
also representative of this general class of problems.*

In the present study of sampling behavior we have formulated
a problem in which the auxilliary optimization task relates to the
measurement of the system state. Research pertinent to this prob-
lem, for thé case of discrete linear regulator systems with finite
terminal time, has been conducted by Kushner (Ref. 27) and by
Meier, et al (Ref. 26). Kushner considered the optimum timing of
state observations, when the number of possible measurements 1is
limited. Meler, et al, considered the general problem of "con-
trolling" a measurement subsystem. (Such problems are referred

% .
It will be shown that the problems of finding optimal modulations
and finding optimal sampling strategies have several aspects 1n
common.
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to as "measurement-adaptive'" problems, and include among others,

the optimum timlng problem and the problem of finding the optimum
sequencing of information over a time-shared communication channel.)
A significant aspect of their formulation is the inclusion of an
additional term in the cost functional, representing the cost of
making measurements.* They have shown that the optimal choice of

a measurement control can be determined, a priori, by solving a
nonlinear matrix optimization problem of the type considered

earlier by Athans and Schweppe.

The work of Meler, et al is most closely related to our
method for determining human sampling behavior, and we borrow
heavily from their ideas. We begin by extending thelr development,
which was for discrete problems, to the continuous time case.

Mathematical Formulation--In this sectlon we shall rely

heavily on combined optimization and estimation theory for con-
tinuous systems (Ref. 22) in order to extend the results of
Meier,et al (Ref. 26) to the continuous time case. We shall first
consider finite terminal time and then extend the results to the
infinite time case. In thls manner we shall reduce the sampling
problem to a deterministic nonlinear (matrix) optimization problem.

In order to clarify the ensuing developments we shall elabo-
rate further on the nature of the class of sampling strategles Q.
In particular, we shall characterize sampling behavlior as a func-
tion of time by making @ a function space whose elements w carry
the time interval [0,») into a given set 5. The set 5 is the
range space for functions w(+)eR. It is the set of values assumed

*
With the introduction of such a term 1t becomes possible to con-
sider for example, constralnts on scanning behavior which arise
from human physiologlcal and/or psychological factors.
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by w(t) for t8[0,°).* Symbolically this is written as
w()eR: [0,o)+Q

or,
w(t)el for all te[0,») .

In this manner, choosing w(+)ef specifies the sampling behavior
as a function of time and, in turn, the time variation of the

noilse covariance matrix V = V(w(t)).

We shall now derive an explicit expression for J¥(w), (see
Eq. (5)). Letw(+)eR be a fixed sampling strategy, let te be
finite and, without loss of generality, let the matrix R in ex-
pression (3) be the identity matrix. We then define

t
f
J(w,ust,) = E %— J [x'Q x + u'u + L (w(t))Ildt (7)
£
[0}

For the linear system

d,x(t) = A x(£)4B u(t)+u(t); covlul = W;x(0) = 0
(8)
y(t) = C x(t)+y, (t); covlv] = V(w(t))
* ~

For example, 1f there are 3 displays one may choose Q@ = {1,2,3}.
In this case the value of w(t) could correspond to the instrument
being vliewed foveally at time t. The set Q consists of piecewise-
constant time functions on [0,«).
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the control input u¥(t;t.) which minimizes (7) is given by
u(t3t.) = -L*(£)x,(£) = -B'K(t30)%,(t) (9)
where g(t;tf) is the solution of the Riccatl equation
K(t) = -K(t)A - A'K(t) - Q + K(t)B B'K(t) (10)
satisfying g(tf;tf) = 0 . The term gw(t) 1s the least mean square

estimate of x(t) and is generated by the dynamlcal system (the
Kalman filter):

(t) = [A - I (£)C'V (w(t))CIx(t) - B u*(t;t,)

CLICL
ot
[%>

+ gw(t)g‘yfl(w(t))g(t) (11)
where the matrix Ew(t) is the "error" covariance matrix
= __A _ 2 1
z,(6) = E{Ix(6) - Z,(6)10x(6) - £,(£)7} (12)
and satisfies the equation

1

d _ -
T I(t) = A 2(t) + Z(LIA' + W - g(t)g'yw CL(t) (13)
with Z(0) = 0O .
Finally, the minimum cost
Py = %. '
T¥(w3te) = J(w,u*;t.) (14)
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is given by

J¥(w3t,) = %—; jf{tr[gm(t)g'_\[‘l(w(t))gzw(t)- K(t36 )42, (£)1+ L (w, )} dt
° (15)

or, as an alternatlve expression,
e

I¥(wsty) = %—fj {tr[_vg K(t3t,) + L¥'(£)L*¥(£)Z (t)] +af(w,t)}dt(l6)
o

In Eq. (16) the first term represents the cost resulting from the
driving noise w(t) and is independent of w. The second term rep-
resents the degradation in cost arising from the estimation noise
Xw‘ The third term represents the "sampling cost" as discussed

earlier.
In the above development it 1s noteworthy that:

1) L*(t) is independent of the noise processes, and
therefore independent of w. (This is the well-
known separability result for linear systems.)
However, the converse 1is not true as w depends
on L¥ through the second term of Eq. (16).

2) Ly(t) is independent of the terminal time t, and
Independent of L¥(t).

We now extend the above results to the case tf+w . We assume
(although it may be possible to show rigorously) that

1im {min J(w;g;tf)} = min J(w;u,») = J*¥(w) (17)

tf+°° u u
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and that this minimum is achieved at

u¥(w) = 1im u*(w;t.)

t o™

f

The left-hand limit of Eg.

1im K(t3te) 5 K = constant

£ o

f
where K 1s the unique positive definite solution of
O=KA+ A'K+Q~-KBB'K
we have

1im L*(t) = L¥ = -B'K
tave T

f

Furthermore, since gw(t) 1s independent of t. we obtain

1im J*(m;tf)

tf*w
= J¥(w)
where
te
- 1 -
Eavg(w) = tliz f; J 3(w,t)dt
f (o}
te
_ 1
ofavg(w) = tlaror: £ [,f(w,t)dt
0
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(17) is readily shown to exist.

trlW K + tr(L*Z, (0L*'] + &,

(18)

Since

(19)

(20)

(21)

g(w)

(22)



are the time-average values of E(w,t) and (w,t) over the infinite
interval [0,«).

In addition, the limit (18) becomes

u*(w) = -L* X (t) (23)

where im(t) is generated by Eq. (11) with E;(t;tf) replaced by
-L* x,(t).

The element w¥(-)eR (or equivalently w*(t)e§ for tef0,x))
which minimizes J*(w) will be used to predict the pilot's scanning
behavior. This is 1n accordance with our assumption that the
pilot acts in a (near) optimal fashion and thereby chooses an
optimal sampling pattern. It remains, therefore, to minimlze
J*(w) over 2, or equivalently, since the first term in J¥*(w) 1is

independent of w, to minimize

I(w) = trIL¥E, (L] + L, (w) (24)

The mathematical optimization problem of finding w¥* 1is ex-
ceedingly difficult at this stage because of the form of the de-
pendence of I(w) upon w. For example, 1f wl(-) and w2(-) are two
elements of 9 which differ only over a finite interval [a,b]c[0,»)
then

I(wl) = I(w2)

This implies that there 1s no unique element w¥(+)eQ which mini-
*
mizes I(w). Thus, the application of variational technliques to

¥
In fact there are an infinity of elements in Q which minimize I(w).
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solve the problem 1in its present form is virtually useless, and
it becomes necessary to introduce further restrictions on the
class Q.

The assumption we shall make 1s that any element w(+)eQ is
periodic with period T < «, where T is fixed but arbitrary. Hence,

w(t) = w(t+T) for all te[0,=) (25)

The mathematical assumption (25) is tantamount to the physical
assumption that the pllot's sampling behavlior is periodic with
period T.

With the assumption (25) we have, in turn, that V(w(t)) is
also periodic with period T. It 1s then possible to show:

1) There exists a unique periodic solution of the
variance equation (13) having perlod T. Call
this solution Z(w,t).

2) For any positive semi-definite matrix F let
EF(m,t) be the solutlon of Eq. (13) satisfying

Ip(w,0) = F, then

lim  Zp(w,t) = T(w,t) (26)

£+

The above two statements imply that
T T
tr | L¥* Jz(w,t)dt L¥'e  + z Jof(w,t)dt (27)
(o]

)=

I(w) =

=

Consequently, the determination of w¥ has been reduced to the
following nonlinear optimizatlion problem:
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T

Optimal Sampling Problem: Given T < «, Find the element
w¥eQ which minimizes I(w), where I(w,t) satisfies

I(t) = A'E(t) + E(t)A + W - E(t)C'V 1 (w(t))CI(t)(28)

Q:lo:
ot

with the boundary condition
I(0) = Z(T) >0 . (29)

Thus far, the sampling period T has been conslidered a fixed but
arbitrary parameter. However, 1n order to completely specify the
sampling behavior of the human operator, we must also specify T.
This 1s accomplished, in accordance with our optimization hypothe-
sls, in the following manner. For a particular value of T the
optimal sampling problem can, in principle, be solved for w¥* and
I(w¥). Thus, w¥(+) will parametrically depend on T and we write

w%(-) z w¥(-)
(30)
I(w%) = I(w¥)
We now vary T, and for each T compute w%(°) as well as I(m%).
Thus, I(w%)owill be a scalar function of T and we let
T* = arg min I(w}) (31)
T

be the requisite cholce of scan period (l.e., the optimal scan
period). In this manner, w%, will describe the optimal sampling
strategy.
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In order to accomplish the minimization indicated in Eq. (31),
it will be necessary to introduce certain nonrepetitive assumptions
and the class 2. As T Increases, the set Q will encompass a wider
class of sampling strategies and not merely repetitive cycles of
those sampling strategles contalned 1n a set @ for smaller values
of T. (Recall that a function which 1is periodic in T 1s also peri-
odic in 2T.)

Solving the Optimal Sampling Problem--The deterministic opti-

mization problem derived above is of a special form. The error
covariance matrix Z(t) may be interpreted as a system state, the
matrix Riccati equation plays the role of a dynamic system and the
function w(t) 1is regarded as a control input. Such a nonlinear
optimization problem will normally have to be solved computation-
ally. Several approaches, based on different characterizations

of the optimal solution, are possible.

Athans and Schweppe (Ref. 25) used a matrix version of the
Maximum Principle in thelr investigation of a nonlinear optimiza-
tion problem of this type. They considered the problem of mini-
mizing

I(w) = tr £(T)

subject to the boundary conditions E(O) = Eo = given; the control,
w(t), was constrained. Using the (matrix) Maximum Principle, they
obtained necessary conditions for optimality. Such conditions can
serve as the basis for various computing algorithms. However,
since our cost functional is of a different form and since the con-
straints on w will not be local in nature 1f we constrain the
sampling rates, the techniques of Ref. 25 would have to be extended
before they could be applied to the problem of determining w¥. In
addition to using the Maximum Principle to compute w¥, there also
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exists the possibility of applying it (for the free terminal time
case) to the problem of determining the optimal sampling perioed.

Meier, et al (Ref. 26) used dynamic programming to solve some
measurement adaptive problems. Dynamic programming methods have
distinct advantages so long as one is not confronted with the
"curse of dimensionality" (Ref. 28). For the optimal sampling
problem, the dimensionality, from a dynamic programming stand
point, 1s determined by the number of instruments to be sampled.
Thus, in problems in which the number of instruments to be sampled
is not too large, dynamic programming technigues might prove quite
useful,

Although the development of theoretically based computational
algorlthms for solving the optimal sampling problem 1s a desirable,
if not necessary, goal, it is possible to solve simple verslons of
the problem by numerical search techniques. It is always possible
to calculate the cost I(wl) for a given wleﬂ. This calculation is
nontrivial because of the split boundary conditions (29) on IZ(t).
In order to evaluate I(wl) it is first necessary to compute X(0)
explicitly. Once this is accomplished, Z(t) is readily obtained
by integrating Eq. (28). We note that since Fq. (28) possesses a
unique periodic solution (corresponding to a given periodic
sampling strategy) it is possible to compute E(O) by means of the
convergent algorithm

E(141)(0) = [¥5,(T,0) + ¥,5(T,0)5,(0)I[¥;,(T,0) + ¥;,(T,0Z,(0)]7"

(32)

37



where the 2n x 2n matrix

¥y, (E,t0) | ¥y, (t,tp)
B Dl A S (33)

¥(t,t ,
¥or(tstg) Xoo (1))

o)

is the transition matrix associated with

-A' 1 -C y’l(w(t))g

2(t) =|-——d- 2.1 (34)

- -W ., A

¥lt,ty) = 2(0)¥(t,t,) 5 ¥lty,t4) = 1 (35)
0 0 0°°0

Thus, I(w) can be evaluated for a given w and one can numerically
compare the costs I(wl) and I(w2) associated with two different
sampling strategies Wy and Wy In this manner it becomes possible
to perform a numerical search for w¥ for a given value of T. One
can then repeat the procedure for various values of T and thus

determine the minimum of I with respect to w and T.

Summary and Comments--In this chapter a precise formulation

of the optimum sampling problem was developed. In the course of
this development several polnts worthy of further elaboration
emerged. First, and perhaps most noteworthy, was the assumption
that the sampling was periodlc. This assumption is not as restric-
tive as it may first seem. Within a period T, any arbltrary se-
guence of instrument selections 1s possible, provided that the
entire sequence is not repeated. This means that each 1lnstrument
may be looked at several times during a single period T and that
the interval between these looks 1s not necessarily the same.
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The assumption of periodicity 1s necessitated by the consideration
of an infinite time problem and 1s tantamount to assuming that
there will be some "steady state" sampling behavior. If we so
choose, the optimizatlon framework can be used to predict human
sampling behavior for a control task of finite duration and thus
obviate the need for the periodiclty assumption. This is accom-~
plished by minimizing J(u(+),w) for a finite tf (as opposed to
taking the 1limit as tf
be very similar to those obtained for the infinite time case, ex-
cept that tf replaces T, and the initial condition E(O) must be
given in the problem statement. For thls case the optimal w¥ will

+ o), The results of such an approach will

represent the scan pattern for the run duration and not averaged
scanning behavior. It should be noted that if tf is finite the
optimal control gains L* are no longer constant.

A second point 1s the possibility of introducing sampling
rate constraints in one of several different ways. Such con-
straints are clearly present in the human operator and, if we are
to obtalin meaningful results from our model, 1t seems likely that
we will have to account for them in our representation. FExplicit
sampling rate constralins can be considered by bounding the derivative
of w(t); this artifice is similar to that suggested by Athans and
Schweppe (Ref. 25) for constraining signal bandwidths. Alterna-
tively, it may be possible to Include a cost for high sampling
rates in the: functional I(w) by choice of a suitable form for the
term df(w,t). Sampling rates can also be constralned implicitly
by 1ntroducing certain transition or "dead" times which corre-
sponds to physiological read-out or data acquisition times. This
was the approach taken by Smallwood and is also the approach we
shall use in the numerical example of the next chapter.

The connectlon between control requirements and sampling
behavior was also clarified in the above development. For the
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Joint control and sampling problem the cost function I(w) is
given by (see Eq. (24))

I(w) = tr[L¥I,  L¥'] + £ (w)

Now, if the operator's task 1s simply to monitor the instruments
and obtain a minimum variance estimate of the system state, it
can readily be shown that the optimal sampling strategy 1s ob-
tained by solving for w¥ to minimize

I(w) = tr[gavg] + cfavg(w)

Such a cost function would assign equal weight to errors in esti-
mation in any of the state varlables. If the operator were in-
structed to consider some state variable errors more important
than others, he could do so by appropriately modifying the cost
function, that is, by choosing I to be of the form

I=trM I, ]+ L ()

v g

The matrix M weights the varlous estimation errors accordiling to
the preselected criteria. But, this is exactly the role played

by the optimal gain matrix L* in our formulation of the joint
sampling and control problem. Thus, the sampling strategy w is
selected to minimize a welghted estimation error where the weight-
ing is consistent with the contributions of the state variables

to the optimal feedback law. The matrix L¥ depends only on the
original weighting matrices, Q and R, in the "overall" performance
index. Hence, it is possible to investigate, in a sytematic way,
the changes in human sampling behavior which result from differ-
ent control requirements (that is, from different weightings Q
and R).
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Finally, we saw that 1n order to determine the sampling be-
havior, it was necessary to solve a nonlinear deterministic opti-
mization problem. Analytic solution to the problem is highly un-
likely and we are faced with the probability that solutions can
only be obtained computationally. Several approaches to obtain~
ing an efficient computational algorithm were discussed but this
remains a prime area for further research. It 1s sometimes feas-
1ble, however, to obtalin solutions by a numerical search and this
1s done for a slmple example 1n the next chapter.
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A SIMPLE EXAMPLE

In this chapter the foregolng concepts and theory are applied
to a specific control and monitoring task. In order to illustrate
the method and avold cumbersome numerical calculations, we shall
consider a simplified example. We shall illustrate: 1) a method
of choosing Q2 and the dependence of V(w) upon w, 2) a method for
constraining sampling rates, and 3) the effects of certain para-
metric varlations upon predicted sampling behavior.

A Two~Axls Tracklng Problem--We assume that a human operator

is presented with two separate displays each being driven by the
output of a first order dynamical system of the form

X, (8) = a;x, (£) + byuy(8) + wy(e) 5 coviw, (£)] = wy, (36)

Thus, the two sets of dynamics (1 = 1,2) are completely noninter-
acting. We assume that Xq and X, are presented on display 1 and

2 respectively, and that the quantities viewed by the human opera-
tor will be (cf. Eqg. (8))

yi(t) = x, (8) + vy(w) ; cov[vi(w)] = Vii(“’)’ i =1,2 (37)

The additive observation noise vi(w) is associated with display 1
*

and depends on the sampling behavior w(t). We defer, for the

moment, a discusslon of this dependence and of the sampling class

Q.

The control task is to pick ul(t) and u2(t) so as to minimize

¥
It 1s assumed that vl(t) and v2(t) are independent.
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e

= 1 2 2
J(ul,uz) = 1lim E E; J [q11 xl(t) + a5, x2(t)

£ _ e

f 0
+ ui(t) + ug(t)]dt (38)

Our objective 1s to predict the human sampling behavior associated
with the given control task. We shall accomplish this by solving
the optimal sampling problem for w¥.

Choice of Sampling Parameters--The solution of the optimal

sampling problem requires the explicit specification of the class
of sampling strategies @ and the functional relationship between
z(w) and w(t). For the example being considered we shall include
sampling rate constraints within these specifications.

1. Sampling Class

We consider a fixed (but arbitrary) scan period, T. At
any time te[0,T] it is assumed that the pilot is either looking
foveally at display 1 or display 2, or else, is 1n the transi-
tional phase (i.e., switching attention). We let w(t) =1, 2 or
0 to correspond to each of the above cases, respectively. Hence,
the set @ which 1s the range space of w(+)eR (see pg. ( 29)) is

& = {1,2,0} (39)

and w(+)e? maps [0,T] into Q.

Note that w(t) so defined is plecewise constant, and over any
time interval may be described by a sequence of values {1,0,2,0,1,...}.
Notice further that sequences of the form {...,1,2,...} are not
allowed. We assume that every transition of foveal attention

between displays requires a finite transition or "dead" time, to.
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Examination of some of our pillot eye movement data indlcates that
a reasonable value of to is 0.1 sec. (This was also the value
Smallwood assumed.)

We are interested In a sequence in which the pilot samples
each instrument once per scan period. Thus, the sequences of
values of w(t) for any w(+)eQ is (assuming for convenience, that
instrument 1 is sampled first) {1,0,2,0}. If we let t, and t, be
the times that a pllot spends in viewing instrument 1 and 2, re-

spectively, we have

(40)

Thus, any element weQ can be characterlzed by the single number
t, (or t2) since T and t, are given. In summary, then, any ele-
ment w(+)el 1is pilecewlse constant over [0,T] and takes on the
sequence of values {1,0,2,0}.

2. Characterization of V(w)

Since w(t) can take on only one of three values, (0,1
or 2) V(w) may be characterized by three matrices V(1), V(2),
V(0). The matrices V(1) and V(2) correspond, respectively, to
the observation noise covariances for foveal viewing of display 1
or display 2, while V(0) is the corresponding covariance matrix
for switching attention. Since we have assumed independent noise
processes, the above matrlces are diagonal. Hence,
V(w) = diaglvy;(w), Voo (w)].

Here, we shall assume that the elements of V(1) and V(2) are
given quantities in the problem formulation. These parameters
relate to, and are identifled with,the display system and 1its
interaction with the human operator. For instance, the numbers

vll(l) and v22(2) will be less than v11(2) and v22(1), respectively,
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since foveal viewing of a gliven display will result in less obser-
vational noise than will peripheral viewlng. Similarly, if the
display separation is increased (or decreased) we might expect the
peripheral nolse covariances v11(2) and v22(1) to similarly in-
crease (or decrease).

The elements of V(0) will be relatively large since we assume
that no display i1s seen accurately during the transition between
instruments. An alternative assumption would be to consider that
no instrument is viewed foveally but that some (in this case both)
are viewed peripherally during a transition. Thils latter assump-
tion would also result 1In relatively large values for the elements
of V(0). Examination of the variance equation (28) shows that as
the elements of V increase, the solution, I becomes increasingly
independent of the magnitudes of these elements. This implies
that a fairly gross approximation to V(0) may be adequate for pre-
dicting sampling behavior. If such is the case 1t would be for-
tuitous since accurate determination of the elements of V(0) seems
an extremely difficult task. Indeed, determining the required
values of V(1) and V(2) is also nontrivial. However, for our
present purposes, we may avold these difficulties by making a
priori selection for the values of the various noise covariances.

Optimal Sampllng Problem for Two-Axls Tracking--We are now in

a position to solve the optimum sampling problem. We are given
the system dynamics, cost criterion, class of sampling strategiles
and observation nolse covariances. It is then easy to show (since
display 1 and 2 are independent) that the optimal sampling problem

reduces to:

Glven T < », find the element w¥eR which minimizes

I(w) = &{2° }1 (t)dt + 27 (t)dt (41)
w) =g 10"11 20"22
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where

G11(8) = 22700, = Wy + 05, (£) /vy ((t))
. (42)
G,5(8) = 28,0,,(8) = Wy, + 05,(8)/Vpx(u(t))
6,,(0) = 0,4(T)>0
(43)
022(0) = 022(T)> 0
/2 2
11 = (al + al + qlbl)/bl
(44)

Since w(t) assumes the values 1, 2 or 0 in the sequence
{1,0,2,0} and since T and to are fixed, the determination of w¥*(-)
is equivalent to the determination of ty. Thus, I(w) 1s a function
of the single parameter tl and the value of t1 which minimizes I(w)
can be obtained by a simple numerical search. For a fixed value
of tl the value of I(w) is obtained by first solving Eq. (43) for
011(0) and 022(0). This 1s readlly accomplished since vll(t) and
v22(t) are merely plecewise constant. We then integrate Egs. (42)

and (41) to obtain I(w).

Thus, for a fixed value of T we can obtain w¥*(+). In order
to obtain the optimum scan period T it 1s necessary to investigate
the behavior of I(w#¥) as a function of T. The value of T which
minimizes I(w¥) 1s denoted by T¥ and serves as a prediction of
human scan period. By the nature of the class 2, T¥ must neces-
sarlly be greater than 2t0 (except for the case when foveal
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attention 1s directed entirely at one display). Finally, the
sampling function w¥*¥ which corresponds to T¥ will serve to pre-
dict mean dwell times for instrument 1 and 2.

For numerical convenience it wlll be assumed that
vll(O) = v11(2) and v22(0) = v22(1). This corresponds to peri-
pheral viewling of both displays during a transition between in-
struments. Thls assumption 1s not expected to appreciably affect
sampling behavior since v11(2) and v22(1) will be greater than
vll(l) or v22(2) (see discussion on pg. (46)).

Results and Discussion--In this section we shall examline some

of the two-axis sampling behavior predictions of our optimal
sampling model. We first examine a "nominal" case and determlne
the optimal sampling period and the average dwell-times for each
instrument. Then we examine the effects of various system changes
on the predicted sampling behavior. We shall investigate system
changes of the following types:

1. Changes in controlled element dynamics.
2. Changes in noise covariances.

3. Changes in cost functional weightings.

The Nominal Case--We choose for a nominal case the situation
in which both axes are identical, 1.e., the dynamics, the driving
nolse covarliances, the associated observation nolse matrices, and
the cost functional weightings are the same for each axis. The
nominal controlled element dynamics correspond to the case a1=a2=0
(this 1s equilivalent to the k/s dynamics, with k=1, frequently used
in tracking experiments). The remaining parameters are chosen

arbltrarily to be
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A transition time to of ,1 seconds 1s assumed throughout.

The results for the nomlnal case are shown as the circled
points in Figures 4-12. We see that the optimum sampling model
predicts, as one would expect, that an equal time 1s spent on each
display. Note, however, that this is not 50% of the sampling
period since 2/10ths of a second 1s lost in the switching of at-
tention. The optimal sampling period T* 1s found to be approximately
1.1 seconds. The cost due to sampling I(w) is approximately 2.8.
No significance can be attached to the numerical values of T¥ and
I(w) at this time since we presently have no experimental data
corresponding to an equivalent situation. Levison and Elkind
(Ref. 16) did look at a two-axis tracking task with k/s dynamlcs
on each axls. They found that when the inputs to both axes were
the same the operator spent about equal time viewing each axis.
They obtained average sampling periods iIn the neighborhood of 2.5
to 3 seconds. However, they used relatively low bandwidths inputs
and, hence, there 1s no reasonable basis for comparing thelr re-
sults with those obtained here.

Effects of Controlled Element Dynamics--In thls section we
25 that is, the controlled
element dynamics, while holding the remaining parameters fixed.

examine the effects of varying a, and a

The results of such variations are shown in Figures 4-6. The re-
sults agree well with intuition. From Figures la and 4b we see
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that a larger percentage of time 1s spent viewing the axls which
is more difficult to track, that 1s, the axis with the more un-
stable dynamics. Indeed, as one axls becomes more stable with
respect to the other, one soon reaches the point where the best
thing to do is to spend all of the time looklng foveally at the
more unstable axis; the more stable axls is then tracked solely
on the basls of information obtained from peripheral viewing of
the assoclated display.

In Flgure 5 we see the effects of changes in the controlled
element dynamlics on the sampling period. Specifically, we have
plotted the minimum sampling period T¥ as a function of a, for
various fixed values of ay. This family of curves has several
interesting, and perhaps important, properties. First, for a4
fixed, the optimal sampling period T¥ has a unique minimum when
consldered as a function of a, and this minimum occurs, at least
numerically, when a, is equal to aq. Moreover, the locus of these
minima, 1.e., the envelope of the family of curves, seems to be a
well-defined, smooth curve. We hasten to point out that we pres-
ently have no analytic results which would support drawing general
conclusions from these findings. However, 1t is difficult to
believe that the numerical results are purely coincidental. An-
other interesting point concerning these curves 1s that T¥ has a
sharper minimum for values of a, corresponding to more stable
dynamics. The value of this minimum, however, decreases as the
systems become more unstable. The decreasing minimum sampling
period can be explalined by noting that as both systems become
more and more unstable it becomes necessary to view each display
foveally more often in order to avoid large estimation errors
(associated with peripheral viewing)f The sharpness of the minima

¥
Recall that scannlng frequency is inversely proportional to T¥,
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1s more difficult to explain. It may be related to the decreasing
value of the minimal optimal sampling period; thus, as Min T¥* de-
creases, that 1s, as the systems become more unstable, the rela-
tive contribution of the dead time 2t0 to the sampling periocd in-
creases and, consequently, small variations in the dynamics of one
system do not appreciably alter the optimal sampling period.

Finally, the effects of changes in controlled element dynamics
on the cost for sampling is illustrated in Figure 6. As expected
the costs increase as the systems become more unstable.

Effects of Observational Nolise Covariances--As noted earlier,
the observation noise matrix will be used to account for the effects
of Iimpreclise measurements. Thils lack of precision may result from
display related phenomena or inherent pllot limitations. Quanti-
tative specification of the observatlon nolse 1s. however, an ex-
tremely difficult task. Here, we content ourselves with an examin-
ation of the changes in sampling behavior which result from varia-
tions in both foveally and peripheral nolse levels, as well as in
the ratio of the two. All other system parameters are fixed at
their nominal levels for this investigation.

In Figures 7 and 8 we show the effects of changes in periph-
eral and foveal nolse levels on the optimal sampling period and
the sampling cost, respectively. Several concluslons may be drawn
from examlnation of these flgures. PFlirst, for fixed values of
peripheral noise, increases in the foveal nolse result in increases
in the sampling period. This may be explalned by the fact that
as the foveal noise level approaches that of the peripheral noise,
the quality of information obtalned by foveal viewing degrades to
the point where it 1s not much better than that which can be ob-
tained by peripheral viewing. Consequently, there is less and less
reason to switch foveal attention. In the 1imit, when the two
noise levels are equal, there is no reason to switch foveal atten-
tion and one would expect the sampling period to approach infinity.
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The curves of Flgure 7 do indeed show very rapid increases in the
sampling period as the foveal nolse level approaches the peripheral
nolse level. On the other hand, for fixed foveal noise levels we
find that as the peripheral nolse lncreases, the sampling perilod
decreases and raplidly tends to some nearly constant value. The
fact that for large peripheral noise levels, small changes in those
nolse levels do not appreciably affect the sampling period, is not
surprising and was discussed eariier. As peripheral nolise levels
increase the amount of information which can be obtained from
peripheral vliewing decreases. Beyond a certain point, the only
useful Information is obtained during foveal viewing and further
increases 1n perlpheral nolse levels have negligible effect on

sampling behavior.

An appealing interpretation of the above results is possible.
The foveal noise level can be considered to be a function of the
display design. High foveal noise levels correspond to a poor
display. Thus, if the foveal nolse is high, longer reading times
and, consequently, longer sampling periods are required. The ratio
of foveal nolse to peripheral nolse, for a flxed foveal noise level,
can be interpreted as a measure of display separation. As the dis-
plays are separated this ratio decreases or what is the same, for
fixed foveal nolse, the peripheral nolse increases. Thus, one
reaches a point of display separation beyond which increases in
the separation do not appreciably affect the sampling period since
nearly all useful information must be obtalned from foveal viewilng.
Conversely, as the foveal to peripheral noise ratio increases, the
displays are moved closer together and the necessity for visual
sampling decreases. When the ratio l1s one, the instruments may be
considered superimposed or integrated. Then, there 1s no neces-
sity for visual sampling and the sampling period approaches infin-
ity.
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Finally, the cost I(y) increases monotonically with increases
in either foveal or peripheral noise. The costs also tend to level
off as the perlpheral noise increases so that the sensitivity of
the cost to changes 1n peripheral noise level for large peripheral
nolse levels 1s small. These results are consistent with our ex-~

pectations.

Effects of Input Nolse Covariance--The effects of changes in .
input nolse levels, for fixed observation noise, on sampling be-
havior are illustrated in Figures 9 and 10. Figure 9 shows that
as the input noise level increases, the sampling period T* decreases.
Increasing the input noise covariance may be interpreted as making
the task more difficult. This, as in other instances, results in
more frequent sampling. As expected, the effect is similar to
that obtained when the input noise level is fixed and the observa-
tion nolse 1s decreased. It would appear that the significant
parameter i1s the ratio of input and observation noise covarlances.

In Figure 10, we see the effects at having different input
noise levels on each axlis. In particular, we have plotted the
percent time spent on instrument 2 vs. the driving nolse level on
axis 2(w22) for various values of axis 1 input noise levels (wll).
We find that for fixed values of Wiq
strument 2 increases as Woo increases. Thls apparently results
from the fact that the control task becomes more difficult as the
input noise level 1lncreases.

the percent time spent on 1n-

Effects of Control Requirements--One of the more significant
aspects of the optimal sampling model 1s the linteraction between
control requirements and sampling behavlior. Here, we brlefly ex-
amline the effects of changes 1n control requirements on sampling
behavior for the two axis trackling problem.
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In the optimization framework we are using, control require-
ments are explicitly stated in terms of a selection for the weight-
ing matrices Q and R. We have "normalized" this selection by
letting R be the identity matrix. Thus, for the two axis tracking
problem we need only choose a, and a5 (since Q is assumed diagonal).
The most significant quantity 1s actually the ratio of these two
welghting coefficients for this simple case.

Figures 11 and 12 show the effects of changing the ratio
q2/ql, for fixed q,, on the fraction at time spent on instrument
2 and the optimal sampling period, respectively. The results are
as expected. Figure 11 shows that as as decreases, i.e., as con-
trol of X5 becomes less important, the time spent on lnstrument 2
also decreases, 1n spite of the fact that the two axes are iden-
tical 1n all other respects. It is interesting to note that the
polint at which instrument 2 is not looked at, at all, occurs prior
to a5 = 0. This is apparently due to the inclusion of a cost for
switching attention (2to). Thus, as a5 decreases, a point 1s
reached where the '"penalty" for switching attention exceeds the
benefits of obtaining better information, by foveal viewing, con-

cerning Xoe

From Figure 12, we see that the optimal sampling period T%
1s a minimum when q2/q1 =1, i.e., when both states are equally
weighted. In addition, small departures from equal weighting do
not materially increase the sampling period. As q2/q1 becomes
elther very small or very large the sampling period increases
rapidly. This is to be expected since both cases correspond to
a slituation in which one instrument is not very important and,
hence, there 1s little need to look at it.
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CONCLUSION

In order to understand the effects of certain display changes
on overall pllot-vehicle system performance, 1t is necessary to
investigate the correlation between control objectives, display
properties and various aspects of human behavior. If such an in-
vestigation 1s to result in objective measures of display effec-
tiveness, the interactlions among display, pilot and vehicle must
be described analytically. This, in turn, requires the develop-
ment of mathematical models for the varlous sub-systems, including
man himself. In this report we develop a model of the human opera-
tor which we feel will be well suited to analytic display evalua-
tion techniques.

The model of the human operator in a multivariable control
and monitoring task is developed by considering the human as an
information processing-control "system". The key idea underlying
the model is the assumption that the well-trained, well-motivated
human operator behaves in a near optimal manner, subject to his
inherent limitations. The model contains an element for describ-
ing the human's limitations in addition to representations of his
instrument monitoring, data reconstruction and control behavior.

The human's limitations are modelled by combining them into
an equivalent perceptual time delay and an equivalent observational
noise. The observation nolse covariance depends on where the opera-
tor "looks" and, hence, allows the effects of peripheral vision
on tracking and instrument "sampling" behavior to be modelled.

The operator's control behavior is assumed to be similar to
that of an ideal feedback controller. The feedback galns, which
multiply estimates of the system states, are selected so as to
minimize a weighted sum of mean squared tracklng errors and con-
trol effort.
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It 1s assumed that the human operator processes the informa-
tion he obtalns from scanning the display panel so as to recon-
struct a "best" estimate of the data necessary for control. The
"data reconstructor" consists of a Kalman estimator and a least
mean squared predictor in tandem. The structure of the data re-
constructor is fixed but 1its parameters depend on the operator's
instrument sampling strategy.

Since an adequate representation of instrument monitoring,
or visual sampling, behavior is central to the problem of display
evaluation, we devoted most of our attention to this aspect of our
human operator model. We reviewed existing sampling models and
found that they had certain inherent restrictions which we felt
would 1limit thelr applicability. Rather than attempt to modify
these models, we postulated a new sampling model which was con-
sistent with other portions of our model in that it was based
upon an underlying optimization approach. In this approach the
operator 1is viewed as an adaptive-measurement system; he decides
where he will direct his foveal visual attention on the basis of
a preselected optimality criterion. Thls criterion depends ex-
plicitly on the control task or control reguirements. Peripheral
vision 1is accounted for and there are no restrictlions with regard
to coupling of signals on various instruments. Provisions for
sampling cost and sampling rate constraints are also included in
the model.

The assumption of the optimality of the human operator leads
to the necesslty for solving a multifaceted optimization problem
in order to predict speclific operator characteristics. We have
formulated this problem preclisely and have dliscussed methods for
obtaining 1ts solution. Flinally, we examined a simple two-axis
compensatory tracking problem and used the model to predict in-
strument sampling behavior. The results exhiblt the general
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characteristics one would expect from a human operator performing
+a similar task.

Some Topics for Further Investigation--Thus far, we have postulated

a model for the human operator in a controlled environment which
has intereéting and lntultively appealing properties. We have not,
however, veriflied that this model is a valld representation of
human behavior. Previous experiments (Ref. 19) have shown that

the controller and predictor portions of the model yield reason-
able representations of the human operator. It 1s now necessary

to determine the efficacy of the sampling and estimation models.
Hence, the next step 1n our research program will be to test these
models against exlisting experimental data.

In the present study the observational noise covariances were
chosen arbitrarily. It is our hope that numerical values for
these quantities can be measured in appropriate experiments.

Since the noise covarlances depend on the display and the environ-
ment as well as on intrinsic human properties, their determination
wlll be extremely difficult. Indeed, 1t may be necessary to con-
sider the nolse covariances as free parameters which are chosen

so as to match experimental data. Thils would be somewhat unfor-
tunate and 1t seems that considerable thought should be given to
methods for experimentally determining the observation noise.

In addition to the questlons concerning the model which must
be resolved experimentally, there remain problems of a theoretical
nature. In the theoretical development we made several assump-
tions concerning the separability of various elements 1in the model.
It would be useful to show vigorously under what conditions these
assumptions hold. Of greater interest is the examination of
methods for mathematically describing the class of sampling strate-
gles Q. The specification of this class has both mathematical
and physical implications. For instance, in the example we
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selected 2 such that the range space of w(°)el was the finite set
@ = {0,1,2}. Although the results are interpreted in terms of
average behavior (because of the infinite lnterval and the result-
ing periodicity assumption), this choice of Q corresponds, essen-
tially, to defining deterministic sampling strategies. Moreover,
this choice of  introduces mathematical complexities since w does
not take on a continuum of values. A characterization of 2 which
eliminates this type of complexity and, at the same time, allows
for a direct probabilistic interpretation of the optimal sampling
strategy w¥* is possible. This, and other, descriptions of the
sampling class warrant investigation.

Finally, there 1s the question of computing algorithms for
solving the optimal sampling problem. It seems reasonably clear
that the numerical search technique used in the example will prove
much too tedious for more complex problems. The investigation
of more efficient algorithms thus remains a prime area for research.
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